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Abstract- 

Mobile data usage is expanding dramatically in wireless social networks, and hence an 

effective pricing mechanism for social-enabled services is urgently required. Though static 

pricing is prominent in the real data market, price intuitively needs to be dynamically altered to 

create higher income. The main challenge is how to develop the ideal dynamic pricing system, 

with prospects for maximising the predicted long-term revenue. In this research, we explore the 

sequential dynamic pricing scheme of a monopoly mobile network operator in the social data 

market. In the market, the operator, i.e., the seller, individually offers each mobile user, i.e., the 

buyer, a given price in numerous time periods consecutively and again. The proposed scheme 

exploits the network effects in the mobile users’ behaviours that boost the social data demand. 

Furthermore, owing to limited radio resource, the effect of wireless network congestion is taken 

into consideration in the pricing structure. Thereafter, we suggest a modified sequential pricing 

mechanism in order to promote social fairness among mobile users in terms of their individual 

utilities. To acquire further insights, we further examine a simultaneous dynamic pricing system 

in which the operator gives the data price concurrently. We analytically show that the suggested 

dynamic pricing scheme may assist the operator acquire better income and customers attain 

higher total utilities than those of the baseline static pricing scheme. We create the social graph 

using Erd˝os- R´enyi (ER) model and the actual dataset based social network for performance 

assessment. The numerical findings verify that the dynamism of pricing schemes over static ones 

may greatly boost the income of the operator. 

Keywords-- Network economics, mobile social data market, network effects, congestion effects, 

dynamic pricing, revenue maximization. 

 

I. INTRODUCTION 

As mobile social apps like Facebook, Twitter, and WhatsApp exploded in popularity, so did the need for 

mobile social data. User interaction with each other is possible via mobile social services, which in turn 

leads to more time spent on social service websites [1]. There were over 3 billion social media users on 

mobile platforms in 2018, which accounts for 57% of all mobile users [2] in 2018. Reversely, the more 

social services consumers utilise and the more social links they have, the more social data they consume 

and the more interpersonal communication they have [3]. It has been shown in [2] that social media 

activity on mobile platforms account for more than half of total cellular data usage, and this ratio has 

been rising steadily in recent years. Increasing a user's participation in a social service is likely to 

enhance the activity of the user's social friends as well. Economic theory refers to this phenomena as 

the "network effect," which describes how the demand for social data from one user is influenced by 

the demand from other users [4]. As a result, the mobile network operator has an incentive to 

encourage more mobile users, i.e., prospective customers, to utilise the social services by consuming 

more social data. To put it another way: The more income a mobile service provider gets from its 

customers, the larger the network effects are. The term "network effect" is often used in both social and 
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economic contexts [7]. According to a few current studies, the pricing under equilibrium circumstances 

and the functioning of a social network based on network effects may be figured out in a few ways. Even 

though it's considered one of the most important concerns in networking economics [10], the 

consequences of network effects have also been studied in communication networks such as the 

Internet [3], [11], [12]. Due to restricted bandwidth in physical communication networks such as 

Ethernet, this potential value is limited. As a result of increased congestion, e.g. service delay, 

consumers may be unable to access or consume as much data as they would want. Congestion is a 

substantial obstacle for the network operator, which results in decreased revenue [5], ]. Consequently, 

not only are networks in the social realm prone to network effects, but so are networks themselves, due 

to the congestion effects. As a result, network operators have generally ignored this topic in the 

academic literature. Network operators may increase their income by using proper pricing techniques 

that directly impact the demand of their customers [14]. To entice customers, the operator at first 

simply offered basic flat-rate data contracts. Online applications and movies have made dynamic pricing 

a more viable option for adjusting to unanticipated user data use in recent years. For this reason, price 

should be used as a strategic tool for influencing demand and so generating more income [15]. 

According to MTN in Uganda and Uninor in India, mobile message prices might be dynamically altered 

after one day or even one hour in order to balance supply and demand [14, 16]. Also, China Telecom 

charges its customers a discount data rate during less congested hours, such as at night, and standard 

data fees when the network is more crowded, such as during the day. Cloud computing, smart data, 

smart grid, and power control are only a few examples of effective real-world uses of dynamic pricing in 

revenue management literature. The optimal dynamic pricing policy for a mobile network operator in 

order to maximise long-term revenue becomes attractive given the flexibility to change the price. Most 

publications on dynamic pricing, such as [15]–[18], solely concentrate on seller demand supplied by the 

stochastic buyer (user) demand model. In other words, they focus mostly on the seller's profit 

maximisation without taking into consideration the relationships between consumers. Because of this, 

interactions between users become more difficult because of the interdependencies that exist between 

them. As a result, dynamic pricing in the mobile data market faces a significant issue that has not yet 

been well addressed in the literature, given the prevalence of network effects and congestion effects. 

Our research is the first of its kind to examine how a mobile network operator, i.e., a seller in the social 

data market who sells social data to a group of mobile users, may optimise dynamic pricing schemes in 

the presence of network effects and congestion effects. Sequential dynamic pricing, in particular, is a 

method that allows operators to offer different prices to different customers over time. Time-varying 

interactions between operator and user are motivated by the fact that data plans typically have multiple 

versions that are released on a monthly or quarterly basis. As a result of this research, the following are 

the most important findings: 

 
 

There is a rise in demand for mobile users' social data due to our model's incorporation of 

network structural elements. Congestion effects are also included into the network 

domain so that radio resources may be accurately captured in wireless network 

environments. Our suggested sequential dynamic pricing scheme, on the other hand, may 

allow the mobile network operator to acquire more income and mobile consumers to get 

higher total utility than those of the present optimum static pricing scheme. 
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As a result, the operator sets the pricing strategy at the beginning of each time period, and 

users decide on their individual data demand at the beginning of each time period at the 

same time. As a result, we find that the operator offers a discount price to those users 

who have more social influence, which may lead to an increase in future users, and that 

the discount price is slightly higher for those users who have more influence because the 

new users may reduce user utility due to congestion effects. 

 

Consider two social graphs to describe the network impacts of social networks. There are two 

graphs, one based on the Erd os-R'enyi (ER) model, and the other based on the Brightkite 

dataset. According to the results of the assessment, dynamic pricing schemes may significantly 

increase the income of an operator over static pricing schemes. 

II. RELATED WORKS 

Network operators' data pricing schemes, which are intended to provide a lucrative 

business while also creating beneficial services for consumers, are an important part of our 

research [14], [21]. Rollover data plans, secondary data market schemes, and sponsored data 

plans [23], [24] are only some of the new and inventive data pricing schemes that network 

operators are dealing with. However, for the design of data pricing, most current research 

overlook the homophily phenomena, i.e. network effects. A new paradigm for network design 

and optimization is based on the social aspects of mobile networking [5]. Decisions are 

influenced by information gathered via social ties, according to the authors of [25]. [26] used 

actual data analysis to demonstrate the existence of network effects in communication services 

and used a simple measure to quantify such an impact. As a result of [26], network effects and 

service pricing have been taken into account together from an economic standpoint [9]. A 

pioneering study [8] examined service provider pricing structures in the face of network effects, 

for example. The dynamic pricing approach of divisible social commodities with network effects 

was described in [27] and [28]. However, the above studies only looked at user behaviour in the 

context of social interaction. Sharing bandwidth is a common occurrence in physical networks, 

such as wireless networks. As a result, the physical domain congestion impact on user behaviour 

is also widespread [29–32]. Due to limited bandwidth and radio resources, an Internet network 

operator's customers may experience congestion [33]. Consequently, it cannot be used in 

wireless network situations, where radio resource is limited and congestion might occur often, 

like the model presented in [8], [9], [27], [28]. Since the issue of whether network operators 

continue to profit from the network effects when congestion occurs remains unanswered. The 

ideal way for network operators to maximise their income from social data services is to create 

pricing that takes into account both network effects and congestion effects in a holistic manner. 

Only the study [5] has offered data pricing methods that take into account both network impacts 

and congestion effects, to our knowledge. The two-stage Stackelberg game model proposed in 

[8] was extended in [5] to describe the interaction between a network operator and mobile users. 

Service providers acting as leaders in the constructed game set the pricing for customers in the 

top Stage I. If the price in Stage II is lower, users who are operating as followers concurrently 

decide on the data demand in order to maximise their own individual utilities Yet [5] only used 

the one-shot game to simulate interactions between network operators and mobile consumers 

with unchanging pricing. As a result, the operator is unable to use its capacity to adjust its 

approach in reaction to the observed history. Accordingly, we investigate sequential dynamic 

pricing in [35], which incorporates both network impacts and congestion effects into price 
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decisions. There are further analytical findings in this publication. When it comes to social 

justice, a sequential dynamic pricing strategy is used. As a further investigation, we take a look 

at simultaneous dynamic pricing. Table summarises the main distinctions between this study and 

most comparable papers. I.Table I Comparison Of Our Work With Most Related Works On 

Pricing 
 

 

III. PROPOSED METHOD 

A. Basic static model 

In a social data market under our consideration, there is a set of mobile users Ɲ 

={1,2,3………N}. Each mobile user i ∈ Ɲ , i.e., the buyer, determines a non-negative quantity of 

the data demand from a Mobile Network Operator (MNO) for accessing social services, denoted 

by xi where xi ∈ [0,∞). Let x =(x1,……,xN) denote the demand profile of all the users and x-i 

denote the demand profile without that of user i. Given the offered price per unit of data pi, the 

myopic user chooses the action that maximizes its utility. Formally, the utility of the user is 

formulated as follows: 
 

In social networks, one user can enjoy an additional benefit from the actions of other 

users [3]. In particular, gij refers to the influence of user j on user i, which we assume to be 

unidirectional. In other words, gij = gji represents the social tie between users i and j, i.e., the 

social tie is reciprocal. Nevertheless, the same model can be applied to bidirectional social 

relations straightforwardly. Moreover, gii = 0 which means one user cannot influence oneself. 

The fee that the MNO charges to user i is equal to pixi, i.e., usage-based pricing. In this paper, 

we consider the case that the MNO can charge the different users with different prices, i.e., the 

discriminatory pricing scheme [36], [37]. More importantly, the users may experience congestion 

with an increase of social data demand at the same time, e.g., service delays, due to the limited 

radio resources in mobile networks. Therefore, we investigate the users’ behaviors by jointly 

incorporating the network effects and congestion effects. The quadratic sum form reflects that 

the congestion experience of each user is affected by the demand of all the users. Also, the 

marginal cost of congestion increases as the total demand increases. We assume that the MNO, 

i.e., the seller, has complete information about the social network and can perfectly charge each 

user differently, i.e., discriminatory pricing1 [38]. The objective of the MNO is to maximize its 

revenue which is expressed as follows: 
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Naturally, the two-stage Stackelberg game can be adopted to model the interaction between the 

MNO and users [5], [13], [39]. In the upper Stage I, the MNO, i.e., the leader, determines price 

pi to maximize its revenue. In the lower Stage II, the users, i.e., the followers, decides on their 

individual data demand xi in order to maximize their utilities being aware of price pi set by the 

MNO. Using the backward induction methods, the existence and uniqueness of a set of strategies 

where no user deviates based on the given price, i.e., the Nash equilibrium, is investigated first.  

Based on this Nash equilibrium, the optimal pricing of the MNO can be further addressed. 

 

B. Dynamic model extension 

Multi-round dynamic pricing, as opposed to a one-round static pricing, is used in this 

case, when the MNO and users interact throughout numerous time periods, such as the day. An 

MNO's revenue and user utility maximisation may be examined simultaneously in such a 

framework, combining demand-side user interaction modelling, in order to examine several time 

periods simultaneously. As a matter of fact, we're thinking of selling the data sequentially. When 

considering sequential dynamic pricing, the MNO might give a regular or discounted price to 

further maximise revenue [34]. 2. For example, the MNO may provide discounts to encourage 

customers to acquire data early in the sequence.. Because of network effects, the data becomes 

more valuable to purchasers later in the series. Consequently, the MNO is able to collect more 

money from successive customers. In the following examples, you'll see that the sequential 

marketing approach works just as well in reality. "Seeding techniques" are commonly used by 

certain start-up firms, in which they first give a discounted pricing to their target customers in 

order to encourage the spread of their product or service. If the firms are operating normally, 

they may be able to offer regular or even higher pricing after this. There are two factors that 

require consideration when it comes to sequential dynamic pricing, which is when data is offered 

to consumers and when the rates are offered. The short-term (immediate) congestion may 

become the long-term (permanent) congestion if the demand for social media services increases. 

"Recovery time" is needed if the server is under a lot of stress in the current time period, for 

example. Servers can't keep up with demand since they have little time to recuperate. Due to 

previous networking activities' congestion, this might have an impact on the following activities, 

as well Long-term congestion in which data use for service access in previous time periods might 

still generate congestion in succeeding time periods is the focus of this research. Research in this 

area should focus on a short-term congestion model in which overall data use does not influence 

congestion experience in one time period. In this paper, we present a sequential dynamic pricing 

system in which the social data demand decision of users reacts on various time scales. With the 

goal of better understanding how consumers pick their tactics simultaneously, we are looking at 

a simultaneous pricing strategy. The MNO sets the price at the start of each time period under the 

simultaneous dynamic pricing system. In this way, mobile users may concurrently decide on 

their own personal social data needs while also taking into consideration the network effects in 

the social domain and the congestion effects in the network domain. 
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IV. RESULTS AND DISCUSSION 

In this part, we run the simulations to show how various factors affect the dynamic 

pricing schemes. The Erd os-R'enyi (ER) graph is used to model the social features of the graph 

G. Probability Pe is the same for any social link between any two ER members. According on 

Brightkite's genuine data trail [20], we also replicate the real social network [21]. Mobile phone 

users are the primary focus of Brightkite's online social networking service. In order to build the 

social network, we randomly choose N users from the actual dataset, which might be 10; 15; or 

50. The average results of 500 runs are calculated for each number of users, N. One can see how 

many social relationships and how likely they are to be formed in the actual dataset in Figure 1. 

Figures 2 and 3 show that sequential dynamic pricing (SeqDP) may be assured during the first 40 

time periods in terms of MNO income and overall user utility. The individual utility of two 

randomly chosen consumers, under SeqDP with and without social fairness consideration, is 

presented in Fig. 4. SeqDP's ability to provide social justice in terms of individual network utility 

may be shown by this example. Our suggested SeqDP is compared to OSP income and overall 

utility in Figure 5-6 to see how the MNO may benefit from social data demand and how much 

money it will bring in. Additionally, we examine the performance when social data demand is 

not interdependent. All of the connections in this unique situation of our socially aware user 

utility have zero. ER-based social graph model (so-ER) and the actual dataset, i.e., Brightkite- 

based social graph model, are also compared in terms of performance (social graph-Brightkite). 

Fig. 5 shows that the total utility increases with the probability of social edge, and the total utility 

attained in the proposed SeqDP is significantly bigger than that of OSP when the likelihood of 

social edge is greater. Total utility rises when the chance of a social edge increases, as more 

social neighbours are connected to a user and their social data need grows. As a result, the 

MNO's income from the SeqDP grows as the chance of social edge increases. MNO income is 

expected to rise as more people get access because of the network effect, which leads to a 

stronger demand for social data. ER-based social network model with zero social ties may be 

used to verify this. 
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Figure 1. Real social data trace from Brightkite [20]: total number of social ties versus the 

number of users (left), and probability of social tie versus the number of users (right). 
 
 

Figure 2. Normalized total revenue of the MNO versus time periods. 

 
 

Figure 3. Normalized total utilities of mobile users versus time periods. 
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Figure 4. The illustration of individual utility of users with and without social fairness 

consideration. 
 
 

Figure 5. Normalized total utilities of users and normalized revenue of the MNO versus the 

probability of social edge. 

 

Figure 6. Normalized total utilities of users and normalized revenue of the MNO versus the 

congestion coefficient. 

CONCLUSION 

Using dynamic pricing methods in the mobile social data market, we have proposed a 

revenue maximisation approach. An individual fee for social data access is offered to each user 

sequentially and repeatedly by the network operator under a sequential dynamic pricing plan. 

The suggested pricing model has taken into account both the social and network implications of 
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congestion. Extensive testing has been done using Erd os-R'enyi graphs and actual dataset-based 

social networks to verify that pricing scheme dynamics are better. Machine learning will be used 

in future research to discover the parameter values that are most closely aligned with the actual 

data market, allowing us to more intelligently and precisely forecast demand for our services. It 

is possible that various time periods have distinct network impacts and congestion coefficients. 

As a result, we want to investigate how to anticipate the values of parameters in a dynamic 

mobile social data marketplace. Another intriguing path is to investigate the theoretical findings' 

sensitivity. Aside from that, we'll be extending the utility formulation of users to include the 

network and congestion impact components. 
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